• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • Explainable fatigue detection in assembly tasks through graph neural networks

    Vishwesh Vishwesh, Maximilian Becker, Pascal Birnstill, Jürgen Beyerer

    Kapitel/Beitrag aus dem Buch: Längle T. & Heizmann M. 2024. Forum Bildverarbeitung 2024.

     Download

    Fatigue during assembly tasks can have a negative effect on subjective as well as objective quality of work. We recorded a novel dataset for the purpose of detecting fatigue in  assembly scenarios. Participants were instructed to assemble and disassemble model cars with the help of a robot arm. The  recordings consist of video, depth video, EEG and eye  racking data as well as questionnaires on the participants’ fatigue. The dataset can be provided to researchers on demand. In addition  to recording a dataset, we implemented a proof of  concept system to detect fatigue solely on image data. In our approach the eye tracking data was used to label the participants’ fatigue. Afterwards,  graph neural network was trained  on poses extracted from the video data and the generated labels. The classifications of the model are made transparent through the use of explainable AI using saliency maps and  GradCAM. This work can have a positive impact on human-machine interaction and assistance systems. Through explainability, we aim to increase the acceptance of such systems by  workers and industries.

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Vishwesh, V et al. 2024. Explainable fatigue detection in assembly tasks through graph neural networks. In: Längle T. & Heizmann M (eds.), Forum Bildverarbeitung 2024. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000174496-15
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 21. November 2024

    DOI
    https://doi.org/10.58895/ksp/1000174496-15