• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • Visual car brand classification by implementing a synthetic image dataset creation pipeline

    Jan Lippemeier, Stefanie Hittmeyer, Oliver Niehörster, Markus Lange-Hegermann

    Kapitel/Beitrag aus dem Buch: Längle T. & Heizmann M. 2024. Forum Bildverarbeitung 2024.

     Download

    Recent advancements in machine learning, particularly in deep learning and object detection, have significantly improved performance in various tasks, including image classification and synthesis. However, challenges persist, particularly in acquiring labeled data that accurately represents specific use cases. In this work, we propose an automatic pipeline for  generating synthetic image datasets using Stable Diffusion, an image synthesis model capable of producing highly realistic images. We leverage YOLOv8 for automatic bounding box  detection and quality assessment of synthesized images. Our contributions include demonstrating the feasibility of training image classifiers solely on synthetic data, automating the  image generation pipeline, and describing the computational requirements for our approach. We evaluate the usability of different modes of Stable Diffusion and achieve a  classification accuracy of 75%.

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Lippemeier, J et al. 2024. Visual car brand classification by implementing a synthetic image dataset creation pipeline. In: Längle T. & Heizmann M (eds.), Forum Bildverarbeitung 2024. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000174496-16
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 21. November 2024

    DOI
    https://doi.org/10.58895/ksp/1000174496-16