• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • AI scratching your car: Using diffusion models for training data generation in automotive damage detection

    Julian Stritzel, M. Saquib Sarfraz, Rainer Stiefelhagen

    Kapitel/Beitrag aus dem Buch: Längle T. & Heizmann M. 2024. Forum Bildverarbeitung 2024.

     Download

    Demand for reliable data remains a major issue in training machine learning models in computer vision. Frequently, datasets are of insufficient scale, imbalanced, not diverse, and of  poor quality, potentially resulting in biased, inaccurate, non-robust, and badly generalizing models. Moreover, realworld training data can raise privacy concerns or be extremely expensive to gather, necessitating alternative solutions. This paper investigates the use of diffusion models for generative data augmentation in semantic image segmentation,  specifically in the domain of vehicle damage detection. We propose a new approach that utilizes an existing diffusion model ControlNet to generate useful synthetic data depicting  realistic vehicles with damages such as scratches, rim damages, dents and etc. Based on this we provide an analysis and show how such a generative data augmentation may help in  scenarios where training data is scarce and of low quality.

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Stritzel, J et al. 2024. AI scratching your car: Using diffusion models for training data generation in automotive damage detection. In: Längle T. & Heizmann M (eds.), Forum Bildverarbeitung 2024. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000174496-18
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 21. November 2024

    DOI
    https://doi.org/10.58895/ksp/1000174496-18