• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • Image stitching using gradual image warping in autonomous driving

    Christian Kinzig, Jiang Yifan, Martin Lauer, Christoph Stiller

    Kapitel/Beitrag aus dem Buch: Längle T. & Heizmann M. 2024. Forum Bildverarbeitung 2024.

     Download

    To improve object recognition and tracking in autonomous driving, we first create a seamless panorama. Object recognition can benefit from image stitching, especially at the borders of  individual images when an object is only partially visible. This also prevents duplicate detection of the same objects in overlapping image areas that are to be filtered for tracking. In  this process, a homography is determined for the overlapping image area, whereby the entire image is transformed using classical image stitching methods. As a result, the  deformations propagate to further images that are to be added to the panorama. To avoid this problem, we integrated a step-by-step image warping approach into our existing stitching  pipeline. This ensures that after attaching one image to another, the outermost right and left borders of the panorama are no longer deformed. Furthermore, the panorama width remains  constant regardless of the calculated homography. We have evaluated our approach on the nuScenes dataset and the Waymo Open Dataset  for perception. In addition to a qualitative  assessment, we evaluate the resulting panoramas in terms of the deformation of the individual images as well as the deformation of labeled object instances.

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Kinzig, C et al. 2024. Image stitching using gradual image warping in autonomous driving. In: Längle T. & Heizmann M (eds.), Forum Bildverarbeitung 2024. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000174496-19
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 21. November 2024

    DOI
    https://doi.org/10.58895/ksp/1000174496-19