• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • The future of machine vision: AI software designed with users in mind

    Markus Schatzl, Jonas Meier, Henning Frechen, Katrin Götzer

    Kapitel/Beitrag aus dem Buch: Längle T. & Heizmann M. 2024. Forum Bildverarbeitung 2024.

     Download

    Machine learning by means of neural networks has developed an indispensable method to solve intricate challenges in  optical quality control for manufacturing. When the technology became usable for inline inspection tasks first, neural network architectures themselves were at focus. However, it has become increasingly obvious that the degree of success in  implementing vision AI systems is highly dependent on a well-structured and reliable infrastructure. These aspects are commonly summarised under the terms of machine learning  operations (MLOps) and human centered design (HCD). Our experiments are conducted using the industrial AI software Neuralyze®, which has served as a basis for several research  projects starting in 2019 to test new approaches to machine learning in manufacturing. In our research, we introduce approaches on how to ideally integrate those methods into AI  software concepts to derive an optimum benefit. It is a key goal to retain standardized handling semantics despite the variety of model architectures and use cases. 

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Schatzl, M et al. 2024. The future of machine vision: AI software designed with users in mind. In: Längle T. & Heizmann M (eds.), Forum Bildverarbeitung 2024. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000174496-4
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 21. November 2024

    DOI
    https://doi.org/10.58895/ksp/1000174496-4