Constrained hand-multiple-eyes calibration
Msuega Jnr. Iorpenda, Volker Willert
Kapitel/Beitrag aus dem Buch: Längle T. & Heizmann M. 2024. Forum Bildverarbeitung 2024.
Kapitel/Beitrag aus dem Buch: Längle T. & Heizmann M. 2024. Forum Bildverarbeitung 2024.
This paper addresses the problem of calibrating multiple visual sensors mounted on a robotic manipulator, a task critical for accurate robot perception and interaction. We present a novel approach to hand-multiple-eyes calibration that incorporates closed-loop constraints to ensure consistency between the sensors’ poses. Unlike traditional hand-eye calibration methods that handle individual sensor pairs independently, our method leverages a unified optimization framework that simultaneously optimizes the relative poses of all sensors while enforcing a loop closure constraint to each pose triplet. The core of our approach is a least squares approach to solve multiple hand-eye matrix equations of the form AX = XB, further enhanced with the method of Lagrangian multipliers to account for loop-closure constraints. We apply this idea to a minimal setup involving one hand and two eyes and demonstrate its effectiveness in improving the accuracy of pose estimation for various levels of noisy measurements.
Iorpenda M. & Willert V. 2024. Constrained hand-multiple-eyes calibration. In: Längle T. & Heizmann M (eds.), Forum Bildverarbeitung 2024. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000174496-5
This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)
Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.
Veröffentlicht am 21. November 2024