• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • Machine learning-based battery electrode foil inspection

    Ines Müller, Wenjing Song, Sebastian Georgi, Timo Eckhard, Alexander Korff

    Kapitel/Beitrag aus dem Buch: Längle T. & Heizmann M. 2024. Forum Bildverarbeitung 2024.

     Download

    This paper presents an analysis of various autoencoder methods for automated anomaly detection. Prototype image datasets of battery foils, used as anode (copper foil) and cathode (aluminum foil) in lithium-ion batteries, are generated using a line-scan camera system with different illumination setups. The objective is to design and evaluate unsupervised learning  methods for surface inspection of the foils. Additionally, the impact of different illumination geometries on the classification performance of the implemented models and their inference  times is investigated and analyzed. Another objective is to accelerate model inference by integrating a DPU-based architecture, focusing on optimizing runtime performance  for real-time anomaly detection. Using the DPU, an approach achieved a speedup by a factor of 40 compared to computations on the CPU.

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Müller, I et al. 2024. Machine learning-based battery electrode foil inspection. In: Längle T. & Heizmann M (eds.), Forum Bildverarbeitung 2024. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000174496-6
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 21. November 2024

    DOI
    https://doi.org/10.58895/ksp/1000174496-6