• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • Deep learning-based localisation of combine harvester components in thermal images

    Hanna Senke, Dennis Sprute, Ulrich Büker, Holger Flatt

    Kapitel/Beitrag aus dem Buch: Längle T. & Heizmann M. 2024. Forum Bildverarbeitung 2024.

     Download

    It is crucial to identify defective machine components in production to ensure quality. Some components generate heat when defective, so automating the inspection process with a thermal imaging camera can provide qualitative measurements. This work aims to use computer vision methods to locate these components in thermal images. Since there is currently  no comparison of object detection and semantic segmentation algorithms for this use case, this study compares different architectures with the goal of localising these components for  further defect inspection. Moreover, as there are currently no datasets for this use case, this study contributes a novel annotated dataset of thermal images of combine harvester  components. The different algorithms are evaluated based on the quality of their predictions and their suitability for further defect inspection. As semantic segmentation and object  detection cannot be directly compared with each other, custom weighted metrics are used. The architectures evaluated include RetinaNet, YOLOV8 Detector, DeepLabV3+, and  SegFormer. Based on the experimental results, semantic segmentation outperforms object detection regarding the use case, and the SegFormer architecture achieves the best results  with a weighted MeanIOU of 0.853. 

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Senke, H et al. 2024. Deep learning-based localisation of combine harvester components in thermal images. In: Längle T. & Heizmann M (eds.), Forum Bildverarbeitung 2024. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000174496-7
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 21. November 2024

    DOI
    https://doi.org/10.58895/ksp/1000174496-7