• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • AutoWP: Automated wind power forecasts with limited computing resources using an ensemble of diverse wind power curves

    Stefan Meisenbacher, Silas Aaron Selzer, Mehdi Dado, Maximilian Beichter, Tim Martin, Marku Zdrallek, Peter Bretschneider, Veit Hagenmeyer, Ralf Mikut

    Kapitel/Beitrag aus dem Buch: Schulte, H et al. 2024. Proceedings - 34. Workshop Computational Intelligence: Berlin, 21.-22. November 2024.

     Download

    Forecasting the locally distributed Wind Power (WP) generation is crucial for future energy systems, demanding scalable WP forecasting models to keep pace with the increasing  number of smart grid applications. Therefore, we propose AutoWP, which is a weighted ensemble of WP curves that represent different site conditions. This representation is achieved  by using a diverse set of WP curves from Original Equipment Manufacturers (OEMs) and optimizing their contribution to the weighted sum of curves using the least squares method. AutoWP is advantageous since physical limitations in WP generation are implicitly reflected in the considered WP curves, and the optimization to find the ensemble weights requires  only a small amount of data and computational effort. Furthermore, AutoWP uses a rule-based and filter-based approach for training data cleaning to identify and filter samples  representing abnormal operation due to shutdowns or partial load operation. It is shown on a real-world data set that AutoWP achieves competitive day-ahead forecasting performance  against other methods based on WP curve modeling and outperforms the autoregressive Deep Learning (DL) method Temporal Fusion Transformer (TFT), which is based on the  attention mechanism.   

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Meisenbacher, S et al. 2024. AutoWP: Automated wind power forecasts with limited computing resources using an ensemble of diverse wind power curves. In: Schulte, H et al (eds.), Proceedings - 34. Workshop Computational Intelligence: Berlin, 21.-22. November 2024. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000174544-1
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 18. November 2024

    DOI
    https://doi.org/10.58895/ksp/1000174544-1