• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • EAP4EMSIG - Experiment Automation Pipeline for Event-Driven Microscopy to Smart Microfluidic Single-Cells Analysis

    Nils Friederich, Angelo Jovin Yamachui Sitcheu, Annik Nassal, Matthias Pesch, Erenus Yildiz, Maximilian Beichter, Lulkas Scholtes, Bahar Akbaba, Thomas Lautenschlager, Oliver Neumann, Dietrich Kohlheyer, Hanno Scharr, Johannes Seiffarth, Katharina Nöh, Ralf Mikut

    Kapitel/Beitrag aus dem Buch: Schulte, H et al. 2024. Proceedings - 34. Workshop Computational Intelligence: Berlin, 21.-22. November 2024.

     Download

    Microfluidic Live-Cell Imaging (MLCI) generates high-quality data that allows biotechnologists to study cellular growth dynamics in detail. However, obtaining these continuous data over  extended periods is challenging, particularly in achieving accurate and consistent real-time event classification at the intersection of imaging and stochastic biology. To address this issue, we introduce the Experiment Automation Pipeline for Event-Driven Microscopy to Smart Microfluidic Single-Cells Analysis (EAP4EMSIG). In particular, we present initial zero-shot results from the real-time segmentation module of our approach. Our findings indicate that among four State-Of-The- Art (SOTA) segmentation methods evaluated, Omnipose delivers  the highest Panoptic Quality (PQ) score of 0.9336, while Contour Proposal Network (CPN) achieves the fastest inference time of 185 ms with the second-highest PQ score of 0.8575.  Furthermore, we observed that the vision foundation model Segment Anything is unsuitable for this particular use case.

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Friederich, N et al. 2024. EAP4EMSIG - Experiment Automation Pipeline for Event-Driven Microscopy to Smart Microfluidic Single-Cells Analysis. In: Schulte, H et al (eds.), Proceedings - 34. Workshop Computational Intelligence: Berlin, 21.-22. November 2024. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000174544-11
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 18. November 2024

    DOI
    https://doi.org/10.58895/ksp/1000174544-11