• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • Optimal Scaling of an Algorithmic Parameter in Restart Strategies

    Lisa Schönenberger, Hans-Georg Beyer

    Kapitel/Beitrag aus dem Buch: Schulte, H et al. 2024. Proceedings - 34. Workshop Computational Intelligence: Berlin, 21.-22. November 2024.

     Download

    This paper investigates restart strategies for algorithms whose success depends on an algorithmic parameter λ. It is assumed that there exists a unique unknown optimal λ. After each restart λ is increased. The main question is whether there is an optimal strategy for choosing λ after each restart. To this end, possible restart strategies are classified into parameter- dependent strategy types. A loss function is introduced, that measures the wasted computational costs compared to the optimal strategy. One criterion that a viable restart strategy  must satisfy is that the loss relative to the optimal λ is bounded. Experimental evidence demonstrates that this is not the case for all strategy types. However, for a specific strategy  type, where the parameter λ is increased multiplicatively with an increasing constant ρ, the relative loss function has an upper bound. It will be shown, that for this strategy type there is  an optimal choice for the parameter ρ that is independent of the optimal λ. 

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Schönenberger L. & Beyer H. 2024. Optimal Scaling of an Algorithmic Parameter in Restart Strategies. In: Schulte, H et al (eds.), Proceedings - 34. Workshop Computational Intelligence: Berlin, 21.-22. November 2024. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000174544-12
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 18. November 2024

    DOI
    https://doi.org/10.58895/ksp/1000174544-12