• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • Human-AI Co-Construction of Interpretable Predictive Models: The Case of Scoring Systems

    Stefan Heid, Jaroslaw Kornowicz, Jonas Hanselle, Eyke Hüllermeyer, Kirsten Thommes

    Kapitel/Beitrag aus dem Buch: Schulte, H et al. 2024. Proceedings - 34. Workshop Computational Intelligence: Berlin, 21.-22. November 2024.

     Download

    This study explores the co-construction of probabilistic scoring systems. Using a self-developed web-based tool, called PSLVIS, participants were able to create their own decision- support models through an interactive interface. Seven academic advising experts participated, assessing the probability of student success both with and without the assistance of a  Probabilistic Scoring List (PSL). The results indicate that while the co-constructed models slightly improved the experts’ accuracy, they also increased decision time. Experts interacted with PSLVIS and PSL in diverse ways, displaying different levels of algorithmic aversion and appreciation. This study underscores the potential of decisionsupport systems that  integrate data-driven algorithms with human expertise, while also revealing the wide range of challenges that need to be addressed for successful co-construction and practical  implementation.

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Heid, S et al. 2024. Human-AI Co-Construction of Interpretable Predictive Models: The Case of Scoring Systems. In: Schulte, H et al (eds.), Proceedings - 34. Workshop Computational Intelligence: Berlin, 21.-22. November 2024. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000174544-15
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 18. November 2024

    DOI
    https://doi.org/10.58895/ksp/1000174544-15