• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • Generation of artificial training data forspectral unmixing by modelling spectralvariability using Gaussian random variables

    Johannes Anastasiadis, Michael Heizmann

    Kapitel/Beitrag aus dem Buch: Beyerer J. & Längle T. 2021. OCM 2021 – 5th International Conference on Optical Characterization of Materials, March 17th – 18th, 2021, Karlsruhe, Germany : Conference Proceedings.

     Download

    A stochastic method how artificial training data for
    spectral unmixing can be generated from real pure spectra is presented.
    Since the pure spectra are modelled as Gaussian random
    vectors, spectral variability is also considered. These training
    data can in turn be used to train an artificial neural network for
    spectral unmixing. Non-negativity and sum-to-one constraints
    are enforced by the network architecture. The approach is evaluated
    using real mixed spectra and achieves promising results
    with the used datasets.

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Anastasiadis J. & Heizmann M. 2021. Generation of artificial training data forspectral unmixing by modelling spectralvariability using Gaussian random variables. In: Beyerer J. & Längle T (eds.), OCM 2021 – 5th International Conference on Optical Characterization of Materials, March 17th – 18th, 2021, Karlsruhe, Germany : Conference Proceedings. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000128686-12
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 17. März 2021

    DOI
    https://doi.org/10.58895/ksp/1000128686-12