• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • Detecting Tar Contaminated Samples in Road-rubble using Hyperspectral Imaging and Texture Analysis

    Paul Bäcker, Georg Maier, Robin Gruna, Thomas Längle, Jürgen Beyerer

    Kapitel/Beitrag aus dem Buch: Beyerer, J et al. 2023. OCM 2023 - 6th International Conference on Optical Characterization of Materials, March 22nd – 23rd, 2023, Karlsruhe, Germany : Conference Proceedings.

     Download

    Polycyclic aromatic hydrocarbons (PAH) containing tar-mixtures pose a challenge for recycling road rubble, as the tar containing elements have to be extracted and decontaminated for recycling. In this preliminary study, tar, bitumen and minerals are discriminated using a combination of color (RGB) and Hyperspectral Short Wave Infrared (SWIR) cameras. Further, the use of an autoencoder for detecting minerals embedded inside tar- and bitumen mixtures is proposed. Features are extracted from the spectra of the SWIR camera and the texture of the RGB images. For classification, linear discriminant analysis combined with a k-nearest neighbor classification is used. First results show a reliable detection of minerals and positive signs for separability of tar and bitumen. This work is a foundation for developing a sensor-based sorting system for physical separation of tar contaminated samples in road rubble.

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Bäcker, P et al. 2023. Detecting Tar Contaminated Samples in Road-rubble using Hyperspectral Imaging and Texture Analysis. In: Beyerer, J et al (eds.), OCM 2023 - 6th International Conference on Optical Characterization of Materials, March 22nd – 23rd, 2023, Karlsruhe, Germany : Conference Proceedings. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000155014-2
    Lizenz

    This is an Open Access chapter distributed under the terms of the Creative Commons Attribution 4.0 license (unless stated otherwise), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. Copyright is retained by the author(s).

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 25. Mai 2023

    DOI
    https://doi.org/10.58895/ksp/1000155014-2