• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • Evaluation of 3D-LiDAR based person detection algorithms for edge computing

    Dennis Basile, Dennis Sprute, Helene Dörksen, Holger Flatt

    Kapitel/Beitrag aus dem Buch: Längle T. & Heizmann M. 2024. Forum Bildverarbeitung 2024.

     Download

    This paper addresses the need for reliable person detection systems in public spaces by developing a novel dataset tailored for solid-state 3D-LiDAR sensors and evaluating various neural network architectures. The dataset was created using a Blickfeld solid-state 3D-LiDAR, capturing 265 point clouds in a controlled test environment modeled on a three-lane  pedestrian crossing. The neural network architectures evaluated include VoxelNeXt, PillarNet, SECOND, PointPillar, CenterPoint, Voxel-R-CNN, PointRCNN, PartA2, and PV-RCNN. The  evaluation methodology follows the KITTI benchmark metric for performance analysis. Key results indicate that voxel-based approaches like SECOND and VoxelNeXt achieve inference  speeds of 10.3 FPS and 9.8 FPS on an NVIDIA Jetson AGX platform, respectively, with mean Average Precision (mAP) scores of 95% and 90%. In contrast, the hybrid  approach PV-RCNN, which combines voxel-based and point-based methods, achieves a mAP f 92% but a slower inference speed of 2.5 FPS. These results underscore  the trade-offs  between speed and accuracy in person detection using solid-state 3D-LiDAR, highlighting the potential of voxel-based methods for real-time applications. The results contribute to the  advancement of person detection technologies in public security and smart city initiatives. 

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Basile, D et al. 2024. Evaluation of 3D-LiDAR based person detection algorithms for edge computing. In: Längle T. & Heizmann M (eds.), Forum Bildverarbeitung 2024. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000174496-14
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 21. November 2024

    DOI
    https://doi.org/10.58895/ksp/1000174496-14