• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • Spatially resolved ingredient detection in spice mixes using 3D convolutional neural networks

    Johannes Anastasiadis, Wolfgang Krippner, Fernando Puente León

    Kapitel/Beitrag aus dem Buch: Längle, T et al. 2019. OCM 2019 – 4th International Conference on Optical Characterization of Materials, March 13th – 14th, 2019, Karlsruhe, Germany : Conference Proceedings.

     Download

    A method using spectral information to detect substances in mixtures is given. The presented convolutional neural network is using three-dimensional convolutions to process hyperspectral images. Reflectance values can be fed directly into the network and are not preprocessed. Due to the architecture, the neural network performs a spatially invariant operation. Detection performance is demonstrated by a dataset containing spice mixtures.

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Anastasiadis, J et al. 2019. Spatially resolved ingredient detection in spice mixes using 3D convolutional neural networks. In: Längle, T et al (eds.), OCM 2019 – 4th International Conference on Optical Characterization of Materials, March 13th – 14th, 2019, Karlsruhe, Germany : Conference Proceedings. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000087509-4
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 18. März 2019

    DOI
    https://doi.org/10.58895/ksp/1000087509-4