• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • Siamese Networks for 1D Signal Identification

    Jan Schuetzke, Alexander Benedix, Ralf Mikut, Markus Reischl

    Kapitel/Beitrag aus dem Buch: Schulte, H et al. 2020. Proceedings – 30. Workshop Computational Intelligence : Berlin, 26. – 27. November 2020.

     Download

    In material sciences, X-ray diffraction (XRD) or nuclear magnetic response (NMR) are methods to generate one-dimensional signals, describing intensities over an angle or a chemical  shift. Each material has a characteristic profile and unknown samples are typically matched to known references. Automatic classification of one-dimensional signal patterns is a non- trivial task due to background noise and varying positions of measured intensities in identical probes. Convolutional Neural Networks prove to be particularly suitable, a limitation,  though, is that adding new classes requires retraining. However, continuous discovery of new materials requires possibilities for easy classextension. Siamese Neural Networks are able  to extend data set classes easily and are popular in the field of face recognition, where new faces are constantly added to the database of references. In this paper, we apply  Siamese networks to one-dimensional XRD-data for the first time and discuss the opportunities and challenges as well as areas of application. We show that Siamese networks are well  suited for the transfer between XRD datasets, achieving an accuracy of 99% for materials not present in the training dataset.

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Schuetzke, J et al. 2020. Siamese Networks for 1D Signal Identification. In: Schulte, H et al (eds.), Proceedings – 30. Workshop Computational Intelligence : Berlin, 26. – 27. November 2020. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000124139-2
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 20. November 2020

    DOI
    https://doi.org/10.58895/ksp/1000124139-2