• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • CAD2Real: Deep learning with domain randomization of CAD data for 3D pose estimation of electronic control unit housings

    Simon Bäuerle, Jonas Barth, Elton Tavares de Menezes, Andreas Steimer, Ralf Mikut

    Kapitel/Beitrag aus dem Buch: Schulte, H et al. 2020. Proceedings – 30. Workshop Computational Intelligence : Berlin, 26. – 27. November 2020.

     Download

    Electronic control units (ECUs) are essential for many automobile components, e.g. engine, anti-lock braking system (ABS), steering and airbags. For some products, the 3D pose of  each single ECU needs to be determined during series production. Deep learning approaches can not easily be applied to this problem, because labeled training data is not available in  sufficient numbers. Thus, we train state-of-the-art artificial neural networks (ANNs) on purely synthetic training data, which is automatically created from a single CAD file. By  randomizing parameters during rendering of training images, we enable inference on RGB images of a real sample part. In contrast to classic image processing approaches, this data- driven approach poses only few requirements regarding the measurement setup and transfers to related use cases with little development effort.

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Bäuerle, S et al. 2020. CAD2Real: Deep learning with domain randomization of CAD data for 3D pose estimation of electronic control unit housings. In: Schulte, H et al (eds.), Proceedings – 30. Workshop Computational Intelligence : Berlin, 26. – 27. November 2020. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000124139-3
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 20. November 2020

    DOI
    https://doi.org/10.58895/ksp/1000124139-3