• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • Application of various balancing methods to DCNN regarding acoustic data

    Dominic Schneider, Manuel Schneider, Maria Schweigel, Andreas Wenzel

    Kapitel/Beitrag aus dem Buch: Schulte, H et al. 2020. Proceedings – 30. Workshop Computational Intelligence : Berlin, 26. – 27. November 2020.

     Download

    This paper describes the application and effects of different balancing methods on the learning behaviour and quality of a DCNN using acoustic data. The aim is to show to what extent  these methods have positive as well as negative effects on the use case of the audio data. The evaluation is based on synthetic audio data with multiclass characteristics, because an  overlay of effects should be avoided. This serves as preliminary work in order to apply the methodology to the measurement data for the classification of knife sharpness in forage harvesters in later investigations. According to applied balancing methods, the data are represented to the DCNN. The performance and quality shall be measured by formal  qualification criteria. It turned out that SMOTE gives the best and most robust results. It shows a higher convergence compared to the other methods. Furthermore the worst results are  produced with untreated raw data.

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Schneider, D et al. 2020. Application of various balancing methods to DCNN regarding acoustic data. In: Schulte, H et al (eds.), Proceedings – 30. Workshop Computational Intelligence : Berlin, 26. – 27. November 2020. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000124139-4
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 20. November 2020

    DOI
    https://doi.org/10.58895/ksp/1000124139-4