• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • Potential of Ensemble Copula Coupling for Wind Power Forecasting

    Kaleb Phipps, Nicole Ludwig, Veit Hagenmeyer, Ralf Mikut

    Kapitel/Beitrag aus dem Buch: Schulte, H et al. 2020. Proceedings – 30. Workshop Computational Intelligence : Berlin, 26. – 27. November 2020.

     Download

    With the share of renewable energy sources in the energy system increasing, accurate wind power forecasts are required to ensure a balanced supply and demand. Wind power is,  however, highly dependent on the chaotic weather system and other stochastic features. Therefore, probabilistic wind power forecasts are essential to capture uncertainty in the model  parameters and input features. The weather and wind power forecasts are generally post-processed to eliminate some of the systematic biases in the model and calibrate it to past  observations. While this is successfully done for wind power forecasts, the approaches used often ignore the inherent correlations among the weather variables. The present paper,  therefore, extends the previous post-processing strategies by including Ensemble Copula Coupling (ECC) to restore the dependency structures between variables and investigates,  whether including the dependency structures changes the optimal post-processing strategy. We find that the optimal post-processing strategy does not change when including ECC and  ECC does not improve the forecast accuracy when the dependency structures are weak. We, therefore, suggest investigating the dependency structures before choosing a post- processing strategy.

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Phipps, K et al. 2020. Potential of Ensemble Copula Coupling for Wind Power Forecasting. In: Schulte, H et al (eds.), Proceedings – 30. Workshop Computational Intelligence : Berlin, 26. – 27. November 2020. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000124139-6
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 20. November 2020

    DOI
    https://doi.org/10.58895/ksp/1000124139-6