• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • On the Detection of SARS-CoV-2 induced Pneumonia in X-Ray Thorax Images with Convolutional Neural Networks

    Patrick Kurz, Paul Kaufmann, Roman Kalkreuth, Jannis Born, Roman Klöcker, Felix Hahn, Felix Döllinger, Timo A. Auer

    Kapitel/Beitrag aus dem Buch: Schulte, H et al. 2020. Proceedings – 30. Workshop Computational Intelligence : Berlin, 26. – 27. November 2020.

     Download

    SARS-CoV-2 is a highly contagious virus that can induce pulmonary complications like viral pneumonia and acute respiratory distress syndrome (ARDS). In order to support RT-PCR  testing, chest X-rays are used to identify the presence of COVID-19 in lungs. Radiologists proficient in chest X-Ray (CXR) interpretation are scarce, motivating our work of examining  the performanceof convolutional neural networks (CNNs) on this task. CNNs are the state-ofthe- art image classification method. In this work we classify X-rays into four classes  (COVID-19, other lung opacity, other diseases and normal). We find, that MobileNetV1 is the best CNN for this task and achieve an overall accuracy of 70% and a COVID-19 accuracy  of 83% on a test data set. By increasing the number of images of the unrestricted classes normal, lung opacity and other, the COVID-19 accuracy can be increased to 95%  and the overall accuracy to 78%. We leverage model interpretability techniques and provide attention heatmaps that can assist in validating the model’s decision process.

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Kurz, P et al. 2020. On the Detection of SARS-CoV-2 induced Pneumonia in X-Ray Thorax Images with Convolutional Neural Networks. In: Schulte, H et al (eds.), Proceedings – 30. Workshop Computational Intelligence : Berlin, 26. – 27. November 2020. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000124139-7
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 20. November 2020

    DOI
    https://doi.org/10.58895/ksp/1000124139-7