• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • Using hybrid information of colour image analysis and SWIR-spectrum for high-precision analysis of construction and demolition waste

    Petr Kuritcyn, Katharina Anding, Elske Linß, Gunther Notni

    Kapitel/Beitrag aus dem Buch: Längle, T et al. 2019. OCM 2019 – 4th International Conference on Optical Characterization of Materials, March 13th – 14th, 2019, Karlsruhe, Germany : Conference Proceedings.

     Download

    This paper discusses the accuracy improvement of automatic analysis of construction and demolition waste (CDW) by using the combination of image analysis and spectral information. This means using the combination of methods of image processing, methods of spectral analysis and methods of supervised learning. The classification performances in colour images and also in SWIR-spectrums showed, that we have to use a combination of these two components in a combined feature vector to improve the accuracy of analysis. Investigations on hybrid information from colour images and SWIR-spectrums were done and compared with the separate usage of these information sources.

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Kuritcyn, P et al. 2019. Using hybrid information of colour image analysis and SWIR-spectrum for high-precision analysis of construction and demolition waste. In: Längle, T et al (eds.), OCM 2019 – 4th International Conference on Optical Characterization of Materials, March 13th – 14th, 2019, Karlsruhe, Germany : Conference Proceedings. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000087509-6
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 18. März 2019

    DOI
    https://doi.org/10.58895/ksp/1000087509-6